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The translational diffusion of probe chains in ternary systems has been measured in the homopolymeric 
polyisobutylene (PIB) system: PIBlfPIB2/chloroform. In the crossover region, dilute/semidilute, a universal 
curve is found with logarithmic (D/Do)o,ob= versus (C/C*)m,t~ix plots. Data for Mprobe>>Mmatrix and 
Mmatrlx>>Mprobe follow the same relationship as those for hard spheres in the same systems. In semidilute 
solutions, a universal curve is found with logarithmic plots of (DM)p~ob= versus (C/C*)m,trix. These data 
establish that the reptation/scaling model is inapplicable in semidilute solutions even though the scaling 
predictions are fulfilled over the concentration interval employed. Recent theories for cooperative chain 
motion are seen to be the most promising means of describing the dynamics in congested solutions. 
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INTRODUCTION 

Translational diffusion in semidilute polymer solutions 
has been the subject of numerous experimental and 
theoretical investigations. Self-diffusion in polymer systems 
has been reviewed in its experimental aspects by Tirrell 1 
and more recent summaries of current viewpoints pertinent 
to ternary systems have also been given by, for example, 
Nemoto et al. 2 and Wheeler and Lodge 3. 

Much of the literature data refers to semidilute 
solutions in which the chains are unentangled or have a 
low entanglement density since the range of concentration 
which is readily accessible to measurement with fractions 
of high molecular weight imposes severe experimental 
curtailments. While there seems to be a general consensus 
that the reptation/scaling model 4 is valid for very strongly 
entangled systems such as the melt, the picture has been 
much less clear in the case of semidilute solutions which 
are less well entangled. The seat of the ambiguity would 
appear to stem from the early observations that the 
predicted exponents: D ~ M-  2 C- 1.75 in good solventsS-9 
apply, at least over a restricted concentration interval, 
and yet much evidence has since accumulated that there 
is a significant dependence on the matrix molecular 
weight which does not fit with the model. The latter 
observation has led to modifications of the original 
theory to take account of the cooperative movement of 
chains surrounding the probe chain (so-called 'constraint 
release')10-13. In addition, both the molecular weight and 
concentration exponents exceed the predicted values as 
the concentration is further increased. 

This has also led to interpretations based on the effect 
of decreasing solvent quality (i.e. contraction of coil 
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dimensions down to the theta dimension at higher 
concentrations) and also corrections for the influence of 
monomer friction when concentration exceeds about 
10% 14. A strong argument against reptation in solutions 
however, derives from the simulation studies of Kolinski 
et al. 15 which find no evidence for the presence of the 
predicted 'tube' which is the underlying feature of the 
model. The central role of entanglements for the applic- 
ability of reptation theory is made clear in recent papers 
of Kavassalis and Noolandi 16'17. Techniques such as 
forced Rayleigh scattering (FRS), pulsed field gradient 
nuclear magnetic resonance (n.m.r.) and dynamic light 
scattering in ternary (polymerl/polymer2/solvent) solu- 
tions in which one polymer is isorefractive with the 
solvent, have been the main methods applied in endeavours 
to establish the influence of the molecular weights of 
'probe' and 'matrix' chains and of the concentration of 
the matrix chain on the diffusion of probe. Since what 
is required is to study the movement of a probe chain 
which is identical in all respects to those surrounding it 
except molecular size, it is clear that all of these methods 
have inherent drawbacks, the most severe of which is 
most likely the use of chemically different polymers in 
the optical labelling method. Instead, we use here an 
alternative approach recently described by Benmouna et 
al. 18'19 whereby polymer1 is chemically identical to 
polymer2, differing only in molecular size, thus approxi- 
mating the ideal experiment. One of the polymers is 
maintained semidilute (matrix) and the other present in 
trace concentration (probe). The utility of the approach 
in determining self-diffusion coefficients of the probe 
chain was demonstrated in references 20 and 21. Pulsed- 
field-gradient n.m.r, was used to confirm the identity of 
the self-diffusion coefficients determined by dynamic light 
scattering. Over broad ranges of relative molecular size, 
precise determinations of the respective cooperative 
diffusion and self-diffusion coefficients may be made. The 



purpose of this paper is two-fold: first, to demonstrate 
the limitations to the possible applicability of the reptation/ 
scaling model; second, to elucidate the parameters which 
are fundamental to self-diffusion in semidilute solution. 

Nemoto et al. 2 considered that self-diffusion and sedi- 
mentation in concentrated systems (solutions and melts) 
could be expressed as the product of two separate contri- 
butions, one being the topological interaction between 
the probe chain and the surrounding matrix chains (m) 
and the other the hydrodynamic interactions pertaining 
to the probe chain (p). This combination constrains the 
motion of a flexible polymer chain, for example, in a 
semidilute matrix. Such an approach appears to be a 
fruitful one. It is convenient here to formulate in terms 
of the general ternary system, with the binary system 
with Mp=M m as a special case, since much of the 
literature data refer to ternary systems. 

An approach leading to a 'universal' curve is a favoured 
means of attempting to establish the role of key 
parameters. Nemoto et al. found a master curve through 
plotting a reciprocal 'topological function' (~k - x) against 
M/M=, where M= is the molecular weight between 
entanglements. The term if-x is considered to describe 
the screening effect of the hydrodynamic interactions 
while M/Me represents the strength of topological 
restrictions on the mobility of the test chain. 

Wheeler and Lodge 3 on the other hand, employed an 
arbitrary shift factor (C') to collapse their data to a double 
logarithmic master curve: (D/Do) versus (C/C'). When 
Mp>>M m, C' was found to scale as C*. When Mm>>Mp, 
C'~C*. In the intermediate range C'~(C*C*) ~/2. In 
detail, neither approach seems completely satisfactory. 
Nemoto's data reduction did not function for Wheeler's 
data, while, on the other hand, Wheeler et al. use an 
empirical shift. It will be shown in the present paper, on 
the other hand, that for the two extremes: Mp>>Mm and 
Mm>>M p, the data can be described in terms of a 
universal curve. Moreover, these data superimpose on 
those for the translational diffusion of hard spheres in 
solutions of the same matrix polymer. This is achieved 
by describing the topological effect of the matrix using 
the reduced concentration (C/C*)m, where C* ~ 1/[r/] and 
[t/] is the intrinsic viscosity. 

The hydrodynamic screening effect for overlapped coils 
(C>C*) is given by Mp -~. Thus double logarithmic 
plots of (DMp) versus (C/C*)m form a curve which is 
universal for Mp >> Mm and for M~ >> Mp. 

The experimental data which form the basis for the 
treatment described are for the homopolymeric polyiso- 
butylene (PIB)/chloroform system and were obtained 
using dynamic light scattering. The presentation brings 
together the previously reported data 2°'21 with those 
from new experiments and indicates a possible coherent 
interpretation. 

EXPERIMENTAL 

Polyisobutylene samples were mostly narrow distri- 
bution fractions from Polymer Standards Service Ltd, 
Mainz, FRG. A description of these materials was given 
in reference 25. The sterically stabilized silica particles 
were kindly donated by Dr K. de Kruif, University of 
Utrecht, The Netherlands. The stabilizing layer was 
terminally grafted cx~n37osi. The hydrodynamic radii 
were 1595 and 318 A. Chloroform was spectroscopic 
grade from Merck, Darmstadt, FRG. 
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Dynamic light scattering measurements were made as 
previously described in reference 21. We have used a 
broad-band multi-tau, multi-bit autocorrelator enabling 
23 simultaneous sampling times and with 191 ex- 
ponentially spaced channels. A newly developed method 
(REPES) 22 for Laplace inversion was used, yielding the 
decay time distribution over wide spans in delay time, 
covering typically up to eight decades. The algorithm 
differs from CONTIN 23 in that the program directly 
minimizes the sum of squared differences between the 
experimental and calculated g2(t) function using non- 
linear programming. The a priori chosen parameter P 
(probability to reject) was put equal to 0.5. Applying the 
method recently described 2°'21, it was found possible to 
determine with good precision the self-diffusion coefficient 
for the probe over a wide range of relative molecular 
weights of probe and matrix when using a concentration 
of probe ,~0.1% , since at this concentration, Dprob e has 
been shown to have a negligible dependence on its own 
concentration 2x. There will always be however, a range 
of relative molecular sizes where the probe and matrix 
components cannot be separated owing to the noise 
inherent in the data. 

RESULTS 

The data are presented below for the two extreme limits 
discussed above. 

Mp>>Mm 
Experiments having this geometry are summarized in 

Figure 1. The same curve has been drawn through the 
data in Figures la and b and this serves to illustrate that 
the data for large PIB coils diffusing in PIB matrix chains 
of lower molecular weight superimpose exactly on those 
for both large and small silica spheres in the same PIB 
matrices. These data span a wide range of matrix 
polymer concentration, above and below C*. Normal- 
ization of the matrix concentration with the relevant C* 
value thus consistently describes the topological influence 
of the matrix. We have used throughout the definition 
of C*= 1/[q], since it was established experimentally 24 
to provide a reliable index of overlap. Since C* ~ M-o. 55, 
this means that Dv,,~M -°'55 in accordance with non- 
draining Zimm behaviour. The probe diffusion has been 
normalized using the infinite dilution value, D o . Similar 
plots were used earlier 25 to describe the data for silica 
spheres and polystyrene coils diffusing in PMMA matrix 
chains. 

Figure 2 collects the data in Figure I coupled with the 
solution viscosity characterizing the matrix solutions, 
and demonstrates the approximate applicability of the 
Stokes-Einstein equation in the concentration range 
used; i.e. large probes, independent of character, move 
in a medium characterized by the macroscopic viscosity, 
q. At the higher concentrations the SiO 2 spheres show a 
clear tendency to interact with the matrix chains. 

M m >> Mp 
Data for the reverse case to that above, i.e. with probes 

smaller than those of the matrix, but with radius of 
gyration (Rg) greater than the correlation length (4) 
defining the matrix component in the relevant concen- 
tration range, are shown in Figure 3a. Here the molecular 
weight of the matrix is varied. Probe diffusion is now 
observed to depend strongly on Mm even when M~/Mp > 
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and 318 A) with Do the infinite dilution values versus PIB concentration, 
normalized with the overlap concentration C*. PIB molecular weights: 
5.4 x 10 + (O);  1.82 x 105 (I7); 6.1 x 105 (A);  1.1 x 106 (<>) with SiO2 
(1595 A). 1.1 x 106 ( 0 ) ;  1.9 x 106 (Fq) with SiO2 (318 A). (b) Analogous 
data to those in (a) but  for a high molecular weight PIB chain (4.9 x 106) 
as probe in PIB matrix chains with molecular weights: 8.04 x 10 + ((3); 
1.82 x 105 (O);  2.47 x 105 (<>); 6.1 x 105 ( . ) ;  1.1 x 106 (A)  

1.0 

d 
" 0.5 

SiOa (t595A1/PIB/CHC13 (gELS) 

a 
I I I I I I 

O'CO ! 2 3 4 5 6 
C/C* 

PIB{4900000)/PIB/CHC] 3 (GELS] 
l.o 

PIB (2470001/PIB/CHCI3 ((]ELS) 
0 

-I l, i 

a 
-4 

-2 -! 0 1 2 3 4 

]nCmatrtx 

PIB {247000)/PIB/CHCI3 {gELS) 

== -3 

--d 

-! 

-6 
b 

I I I I I 

-2 -1 0 1 2 3 

lnC/CWmatrix 

Figure 3 (a) Logarithmic plots (D/Do) versus C for a low molecular 
weight PIB chain (M =2.47 x l0 s) in high molecular weight PIB matrix 
chains: M = 1.1 x 106 (O); 1.9 x 106 (O); 4.9 x 106 (~). The matrix 
entanglement concentration is indicated. (b) Diagram as in (a), but 
with matrix concentration normalized with C* 
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Figure 4 Master logarithmic curve of D/D o versus C/C* for the 
collected data in Figures I and 3 
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Figure 2 (a) Plot of Drl/D o versus C/C* for large SiO 2 spheres in PIB 
matrix fractions: 1.82 x l0 s (0 ) ;2 .47  x l0 s (O);  6.1 x 105 (I-q); 1.9 x 106 
(<>). (b) Analogous plot to (a), but  for the large PIB probe 

10 ) in the same PIB fractions ( M = 4 . 9  x 6 

10. However ,  even here normal izat ion of the matrix 
concentra t ion with its C* (Figure 3b) leads to super- 
posit ion of  the curves shown in Figure 3a. I t  is impor tan t  
to note that  Figures la,b and 3b also superimpose,  as 
demonst ra ted  in Figure 4 which is a master  curve for the 
collected data  f rom Figures I and 3. 

Figure 5a shows the influence of  varying the probe 
chain size, but  still with M m > Mp. (It may  be noted that  
for very small probes when R z < ~ for the matrix, probe 
diffusion is essentially independent  of  the matrix concen- 
tration.) A strong residual dependence of  the probe 
diffusion rate on Mp is seen if normal izat ion with Do is 
used. For  semidilute solutions (i.e. for C > C * ) ,  this 
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Figure 5 (a) Logarithmic plots (D/D o versus C/C*) for PIB probe 
chains with molecular weights: 1.82 x l0 s (O);  2.47 x l0 s ( 0 ) ;  6.1 x l0 s 
(A); 8.56 x l0 s (&) in PIB matrix chains (M=4.9 x 106). The matrix 
entanglement concentration is shown. Co) Logarithmic plots of (DM)probe 
versus (C/C*)~m~ for the data in (a) 

dependence disappears as shown in Figure 5b when 
(DMp) is plotted logari thmically against (C/C*)m. The 
reasoning behind this is that,  above the matrix overlap 
concentra t ion,  screening of  the hydrodynamic  inter- 
actions follows the Rouse model  for freely draining coils 
with no entanglements:  Dp ,-, M p -  1. 

Concent ra t ing  now only on semidilute solutions, 
Figure 6 summarizes the data  for: 

(a) the small p robe  in different matrix molecular  weights; 
(b) different probe  molecular  weights in a high molecular  

weight matrix;  
(c) the large probe chain in matrix solutions of  lower 

molecular  weight. 

It is impor tan t  to note  here that  with the matrix of 
4.9 x 106, CB,~C* and thus th roughou t  the semidilute 
regime the chains are entangled. 

It is shown in Figure 7 that  all the data  in Figure 6 
(i.e. for both  Mp>>Mm and Mm>>Mp) fall on  a master  
curve when plotted as (DM)probe v e r s u s  ( C / C * ) m a t r i  x. Thus 
the probe molecular  weight factor  accounts  adequately 
for the hydrodynamic  screening while normal iza t ion of  
the matrix concentra t ion with C* describes its topological  
effect on  the probe diffusion. 

A set of  new experiments has been performed with 
an intermediate system in order  to show the crossover 
f rom M p > M  m to M m > M  p with a c o m m o n  matrix:  
(M = 1.1 x 106). Probes  both  larger and smaller than that  
of  the matrix were used and the results are shown in 
Figure 8. The line drawn th rough  the points is the same 
as that  used in the master  curve (Figure 7). 
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Figure 6 Logarithmic plots for semidilute solution data: (DM)prob e 
versus (C/C*)==ri=. (a) PIB (2.47 x 105) as probe in PIB with M = 1.1 x 
106 (O); 1.9 x 106 (0); 4.9 x 106 (A) as matrix polymer. (b) PIB probes 
with M = 1.82 x 105 (O); 2.47 x 105 (0); 6.1 x 10 s (A); 8.56 x 105 (&) 
in PIB (M =4.9 x 106) as matrix polymer. (c) PIB probe (4.9 x 106) in 
PIB with M=8.04 x 104 (O); 1.82 x 105 (O); 2.47 x 105 (0); 6.1 x 10 s 
(A); 1.1 x 106 (A) as the matrix polymer 
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Figure 8 Logarithmic plots: (DM)p,ob, versus (C/C*) for various probe 
molecular weights: 8.04× 104 ((3); 1.82× l0 s (O); 2.47× l0 s (Z~); 
1.9 × 106 (&); 3.6 x 106 (~ )  in PIB 1.1 × 106 as the matrix polymer. 
The matrix entanglement concentration is shown 

DISCUSSION 

A number of conclusions can be drawn from the data 
presented above. 

Crossover regime: dilute/semidilute 
Figures 1 and 2 show that flexible coils and hard 

spheres whose size is substantially greater than that of 
the matrix polymer (and thus whose characteristic 
relaxation time exceeds the lifetime of transient entangle- 
ments in the network), diffuse according to the Stokes- 
Einstein mechanism; i.e. the reduced diffusion coefficient 
D/Do is determined by the macroscopic viscosity of the 
medium. A master curve for (D/Do) versus (C/C*) thus 
exists over a wide range of matrix molecular weights and 
concentration from dilute to semidilute. Only as the 
matrix concentration becomes high (C > 3C*) does there 
appear to be a weak interaction between the silica spheres 
and the PIB chains. In the concentration region in which 
this occurs, the solutions are entangled with all molecular 
weights. With large PIB chains as probes, there is only 
a slight change in (Drl/Do) with matrix concentration, 
which does not support a significant contraction of the 
probe chain over the concentration interval employed. 

There is a strong dependence of probe chain diffusion 
on the molecular weight of the matrix in contrast to 
predictions of scaling/reptation. This extends in the 
present system up to M J M p = 2 0 ,  although others 6'9 
have reported that above M J M p = 3 - 5 ,  matrix inde- 
pendence is observed. This dependence (the topological 
effect) is eliminated, however, when the matrix concen- 
tration is normalized with its overlap concentration. The 
modified reptation model of Hess 13,26 takes into account 
'constraint release' with a gradual transition to 'pure 
reptation' with increasing concentration. This is found 
to be reflected in a transition from: D",Mp2Mm 1 

~ M - 2 M 0  (reptation). The (constraint release) to D -.-p ---m 
present data correspond to an intermediate exponent: 
M,~ o.ss. 

Semidilute solutions 
With probe chains of different size and when the matrix 

concentration exceeds overlap, it is necessary to take into 
account the influence of hydrodynamic screening. Thus 
plots of (DM)probe versus (C/C*)matri ~ form a master curve 
(i.e. there is a common relationship for probes both much 
smaller and much larger than the matrix). The molecular 

weight exponent increases smoothly with increasing 
concentration from about 0.6 in dilute solution to the 
previously established value of - 2  which is approxi- 
mately valid when C > C* although only over a limited 
range of concentration. Figure 9 shows how the molecular 
weight dependence of the probe increases from M -°'6 at 
infinite dilution via M-1 at about C*, to M-1.9 at 3C*. 
Above C*, the concentration exceeds the entanglement 
concentration, Cv. (ref. 27)for the matrix (M = 4.9 x 106). 

Taken together, the data for semidilute concentrations 
establish (at least for the ranges of relative molecular 
weights and with the concentrations used in the present 
system) that a common mechanism is valid for probe 
diffusion. In the limit Mp>>Mm, where the matrix 
chains are unentangled for the low molecular weights 
and entangled for the high, this is clearly the Stokes- 
Einstein mechanism. However, for probes smaller than 
the matrix M p  < Mm but still having a Rg larger than the 
correlation length of the latter, diffusion is no longer 
simply related to the macroscopic viscosity of the 
medium. The translational diffusion is then, on the one 
hand, dependent on the matrix molecular weight and, 
on the other, it is necessary to take into account the 
influence of hydrodynamic screening. When this is done, 
a universal relationship is established for probe diffusion 
in systems differing widely in relative molecular weights 
of probe and matrix. 

The latter means that it is not necessary to postulate 
a distinctly different mechanism for translation of the 
probe (such as reptation) when the probe size is smaller 
than that of the semidilute matrix. It may be objected 
here that the present data do not extend to sufficiently 
high concentration/molecular weight ranges to provide 
a test for the reptation/scaling modeP '3° in solution. 
Against this we would point out that the theoretical 
exponents predicted in good solvents (D ~ M - 2 C  - 1.7s) 
are observed 21 in the presently used concentration 
range. One interpretation is that these exponents typify 
dynamical behaviour in semidilute solutions but are not 
sufficient criteria for reptation/scaling. 

This paper is not a critique of the tube model. In the 
reptation model of de Gennes and Edwards, the probe 
chain diffuses in a dense network of entanglements 
formed by the neighbouring chains which are essentially 
frozen on the time scale of the probe chain motions; thus 
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Figure 9 Logarithmic plots of D versus molecular weight for the probe 
at various concentrations of matrix: infinite dilution ((3) 0.18%; 0.6C* 
(O), 0.298%; C* (rT), 0.486%; 1.6C* ( I ) ,  0.602%; 2C* (A), 0.894%; 
3C* (A). The slopes are, respectively, from top to bottom: -0 .6 ;  
-0 .85;  - 1.15; - 1.44; - 1.47; - 1.92 
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one can  understand the success of the model in describing 
the dynamics of polymer melts with long chains. The 
suitability of applying this model to data for semidilute 
solutions is less than clear. This remark is addressed to 
the bulk of the literature data on semidilute solutions. 

The observed variation in the molecular weight 
dependence for probe diffusion and the progression in 
the exponent to a limiting value (D~  M -2) may be seen, 
instead, to be a general consequence of diffusion in 
congested systems and derives from the combined effects 
of hydrodynamic screening and the topological restrictions 
imposed by the matrix polymer.  It thus becomes straight- 
forward to understand the observed variation in the 
concentration exponent, which is well known to exceed 
the predicted reptation/scaling value of - 1 . 7 5  (good 
solvents) and to increase towards a value of - 3  or even 
higher 7. I t  should be mentioned that the present concen- 
tration ranges are sufficiently low ( < 3 % )  that it is 
unnecessary to correct for the influence of the monomeric  
friction coefficient on the concentration exponent. This 
should become significant for concentrations in excess of 
about  10% 14. As pointed out, there has been considerable 
ambiguity with interpretation in terms of scaling since 
there will always be concentration/molecular weight 
ranges where an exponential model provides a plausible 
fit to the data. The work of both Skolnick and 
coworkers 15 and Phillies 31 have provided alternative 
theoretical viewpoints to reptation/scaling for self- 
diffusion in congested systems. 

C O N C L U S I O N S  

Probe self-diffusion coefficients have been estimated for 
PIB chains in matrix chains of the same polymer,  such 
that probe chains much smaller than, and also much 
larger than, the matrix chains have been used. 

In the crossover range from dilute to semidilute 
concentration of the matrix, the data form a universal 
curve when plotted logarithmically as (D/Do) versus 
(C/C*) .  Data  for the translational diffusion of silica 
spheres of different sizes in the same PIB matrix chains 
fall on the same curve, 

In the semidilute regime, hydrodynamic screening must 
also be taken into account. Then logarithmic plots of 
(DM)probe v e r s u s  ( C / C * ) m a t r i  x form a universal curve. 
Thus D_robe is determined by both hydrodynamic and 
topological contributions m congested solutions. 

Taken together, the data demonstrate that the reptation/ 
scaling model is inapplicable in semidilute solutions. 

Self-diffusion: W. Brown and P. Zhou 

Instead models  l~hat consider cooperative chain motions, 
such as those of Rendell et al. 29 and Skolnick and 
coworkers 15 are seen to be the most promising. The 
representation of Phillies 31 also provides an alternative 
and excellent phenomenological description of self- 
diffusion data in such solutions. 
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